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Abstract—Reaching consensus in a network is an important
problem in control, estimation, and resource allocation. While
many algorithms focus on computing the exact average of the
initial values in the network, in some cases it is more important
for nodes to reach a consensus quickly. In a distributed system
establishing two-way communication may also be difficult or
unreliable. In this paper, the effect of the wireless mediumon
simple consensus protocol is explored. In a wireless environment,
a node’s transmission is a broadcast to all nodes which can
hear it, and due to signal propagation effects, the neighborhood
size may change with time. A class of non-sum preserving
algorithms involving unidirectional broadcasting is extended to a
time-varying connection model. This algorithm converges almost
surely and its expected consensus value is the true average.A
simple bound is given on the convergence time.

I. I NTRODUCTION

Reaching consensus is an important building block underly-
ing more complex protocols in distributed networked systems.
In particular, consensus is critical for synchronization,con-
trol, data fusion, and load balancing. Randomized consensus
algorithms have received significant attention in recent years,
motivated by emerging sensor network applications. In this
paper we study the effect of physical layer signal propagation
effects on the convergence speed of an asynchronous broad-
casting “gossip” algorithm for achieving consensus. Consensus
algorithms perform iterative updates of a state estimate until
the network achieves consensus. The central feature of gossip
algorithms is the asynchronous time model in which each
update only involves a subset of the sensors (often only two).
The nodes in the networks involved in each update are usually
neighbors, and in each update the nodes update their state
via a simple linear combination of their values. From their
introduction in Tsitsiklis’s thesis [1], gossip and consensus
algorithms have been investigated for several applications in
distributed control, sensor networks and distributed signal
processing.

One issue with pairwise averaging is that local commu-
nication with a small number of nodes may be inefficient.
For example, the communication complexity of the random-
ized gossip algorithm of [2] (measured by number of radio
transmissions to drive the estimation error to withinΘ(N−α),
for any α > 0 ) on the order ofΘ(N2 log N) for random

geometric graphs. The proposed “geographic gossip” algo-
rithm combines gossip with geographic routing to improve
the convergence rate of random gossiping [3]. Similar to
the standard gossip algorithm, a node randomly wakes up,
chooses a node randomly in the whole network, rather than
in its neighborhood, and performs a pairwise averaging with
this node. Geographic gossiping increases the diversity of
every pairwise averaging operation. The authors show that the
communication complexity is in the order ofO(N3/2

√
log N),

which is an improvement with respect to the standard gos-
siping algorithm. More recently, a variety of the algorithm
that “averages along the way” has been shown to converge
in O(N log N) transmissions [4]. Nedic et. al [5] presented
constrained consensus algorithms where the estimate of each
agent is restricted to lie in a different constraint set. The
problem of reaching a consensus and rate of convergence in the
values of a distributed system with time-varying connectivity
in the presence of delays is studied in [6].

A second issue with pairwise averaging is that a two-way
link must be established, making these protocol vulnerableto
packet collisions. To overcome the drawbacks of the standard
packet based gossip algorithms, a broadcast based gossiping
algorithm for wireless sensor networks was also recently stud-
ied [7]. In that work a node in the network wakes up uniformly
at random according to the asynchronous time model and
broadcasts its value. This value is successfully received by the
nodes in the predefined radius of the broadcasting node,i.e.,
connectivity radius. The nodes that have received the broad-
casted value update their own state value and the remaining
nodes sustain their value. It is shown through simulations that
the broadcast gossip achieves a consensus much faster than
both random and geographic gossip algorithms, especially for
moderate network sizes.

We are interested in the benefits that can be obtained
from the broadcast nature of the wireless medium on the
convergence of distributed message-passing algorithms. One
approach to using the wireless medium in consensus is to
enable physical-layer cooperation [8], [9], but this generally
requires information-theoretic assumptions involving long vec-
tors of numbers to be averaged. Related recent work uses the
wireless medium to eavesdrop other nodes values [10], or to



deal with noisy links and quantization effects [11]–[13]. In this
paper we only exploit the broadcast benefit of the physical
medium without worrying about these extra complications;
they remain to be investigated in future work.

In particular, we are interested in how fading can eventually
enable opportunistic longer-range transmissions. Depending
on the fading statistics, it may be possible for a the broadcast
message of one node to reach other nodes far away in the
network. Enforcing a multihop or local connection model as
in [3], [4], [10] corresponds to the assumption that long-
distance connections are wasteful in terms of power or that
the attenuation of the signal due to long distances.

We analyze a probabilistic version of the broadcast-based
gossip algorithm originally introduced in [7] and determine
analytical convergence results. In particular, we show that it
converges almost surely and that its expected consensus value
is the true average. The actual consensus value may vary about
the true mean, which is a limitation of this and other non-
sum-preserving algorithms. We defer this analysis for the full
version of this paper, but the techniques of [7] apply directly
to this model as well. Even though the consensus value may
be different from the true mean, we provide a simple bound on
the time to reach consensus. All our results hold for general
graphs and fading models. We show that for the special case of
power-law decaying probability of successful communication,
the convergence rate may be surprisingly fast.

II. PRELIMINARIES AND SHOUT GOSSIPALGORITHM

In the following, we briefly discuss the graph and time
models adopted in this paper. Then, we describe briefly the dis-
tributed average consensus problem along with the proposed
consensus algorithm.

A. Notation

We will denote the all1’s vector by1 and J = 1
N 11T .

The symbolsP(·) andE[·] denote probability and expectation.
We write ei for the i-th elementary vector, and for a subset
K ⊂ [N ] we write eK =

∑

k∈K ek for the vector with1’s in
the coordinatesK and0’s elsewhere. We writeKc = [N ]\K
for the complement ofK in [N ]. We write P for the matrix
(Pij), andpi for the i-th row or column ofP (note that by
definition P is symmetric). We will often think ofP as the
adjacency matrix of a weighted graph. The LaplacianL(P )
for P is

L(P ) = diag(P1) − P . (1)

B. Time Model

We use the asynchronous time model, which is well–
matched to the distributed nature of sensor networks [2],
[14]. In this model, each sensor node is assumed to have a
clock which ticks independently according to a rateµ Poisson
process. Consequently, the inter-tick times are exponentially
distributed and independent across nodes and over time. This
process is equivalent to a single clock whose ticking times
form a Poisson process of rateNµ. Let Zt be the the
arrival times of this global process. In expectation, thereare

approximatelyNµ clock ticks per unit of absolute time but we
will always measure time in number of ticks of this (virtual)
global clock. We therefore think of time as discretized with
the interval [Zt; Zt+1) corresponds to thet–th timeslot. We
can adjust time units relative to the communication time so
that only one broadcast event occurs in the network at each
time slot with high probability.

C. Graph Model

We model our wireless sensor network as a graphG with
N vertices or nodes distributed in the plane at locations{Ri :
i ∈ [N ]} in R

2. The N–node topology ofG at time stept is
represented by theN ×N distance matrixD, where fori 6= j,
Dij is the distance between nodesi and j. For example, we
may takeG to be the random geometric graph, where theN
sensor locations are chosen uniformly and independently ina
unit square area.

D. Average Consensus

At time slot t ≥ 0, each nodei = 1, 2, . . . , N has an
estimatexi(t) of the global average, and we usex(t) to denote
the N -vector of these estimates. The ultimate goal is to use
the minimal amount of communication to drive the estimate
x(t) as close as possible to the average vectorx(0)1, where
1 is the vector of all1’s and

x̄(0) =
1

N

N
∑

i=1

xi(0). (2)

Because our algorithms are randomized, the quantityx(t) for
t > 0 is a random vector even though we assumex(0) is
deterministic.

E. Broadcast consensus protocol

Suppose at time stept, nodei ∈ N = {1, 2, . . . , N} clock
ticks. Then nodei activates and the following events occur in
the network:

1) Nodei shouts/broadcasts its current state value,xi(t) over
the wireless medium.

2) The shouted value is successfully received by the node
j in the network with probabilityPij that is a mono-
tonically decreasing functionf(·) of the distanceDij

between nodesi andj.
3) Let J denote the set of nodes that successfully received

the shouted state valuexi(t). Each nodej ∈ J updates
its own state value according to

xj(t + 1) = γxj(t) + (1 − γ)xi(t), j ∈ J (3)

where γ ∈ (0, 1) is the mixing parameter of the algo-
rithm.

4) The remaining nodes in the network,i.e., the nodes that
did not successfully receive the shouted value, including
i, update their state value as

xj(t + 1) = xj(t), j ∈ N − J . (4)



F. Impact of different fading models

One example for the reception probabilityPij is to assume
a lognormal shadowing [15] so that the signal-to-noise (SNR)
at j from a transmission byi is given by

log SNR = A − α log Dij + S , (5)

whereα is the pathloss andS is the shadowing effect. The
probability for a node to be above a given SNR threshold
(indicating successful reception) can serve as a model forPij .

A simpler model is to setPij inversely proportional to a
power of the distanceDij and directly proportional to the
transmit powerP :

Pij ∝ P
Dβ

ij

. (6)

In this simplified model, for a network ofN nodes with
constant density, the reception probability for the two most
distant nodes scales likeN−β/2. For a network with constant
density, the transmit power is typically scaled down to save
power, which would give a more complicated dependence on
N .

G. Matrix updates

Let A(t) denote the random index of the node of which the
internal clock ticked. Formally, letx(t) denote the vector of
state values at the end of time-slott. Then, the network-wide
update is given by

x(t + 1) = W (t)x(t) (7)

where the random matrixW (t) is characterized as following:

P(W[j](t) = γej + (1 − γ)ei|A(t) = i) = Pij (8)

and
P(W[j](t) = ej|A(t) = i) = 1 − Pij (9)

wherePii = 0, W[j] denotes thej–th row of the matrixW
and ej denotes the row vector of zeros only which thej–th
element is one.

III. A NALYSIS OF THE ALGORITHM

We now turn to the analysis of the algorithm. In subsection
III-A we provide some properties of the averaging matrices.In
III-B we prove that the algorithm converges almost surely, and
in III-C that in expectation it converges to the true average. In
III-D we provide a simple bound on the convergence time of
the algorithm in terms of the matrixP .

A. Averaging Matrix Properties

The following results reveal important properties regarding
the random averaging matrices{W (t) : t ≥ 0}.

Lemma 1 The random averaging matrixW (t) obeys

P (W (t)1 = 1) = 1 (10)

and

P
(

1T W (t) = 1T
)

= N−1
N
∑

i=1

N
∏

j=1,j 6=i

(1 − Pij) (11)

for all t ≥ 0.

Proof: See the Appendix.
The above Lemma reveals two important properties of the

gossip algorithm: 1)c1 for somec ∈ R is a fixed point of the
gossip algorithm. If the algorithm converges to a consensus,
the network will not leave the consensus state; 2) However,
it also shows that the sum (and therefore the average) of the
vector of node values is very unlikely to be preserved at each
step. In fact, the sum is preserved only when none of the nodes
in the network receives the value.

The next lemma describes the expected values of various
functions of the weight matricesW (t) which will be useful
in deriving eigenvalue bounds and convergence results for the
algorithm.

Lemma 2 We have the following:

W
∆
= E[W (t)] = I − 1 − γ

N
L(P ) (12)

W ′ ∆
= E[W (t)T W (t)] = I − 2γ(1 − γ)

N
L(P ) (13)

W ′′ ∆
= E[W (t)T JW (t)] = J +

(1 − γ)2

N2
L(P )2

+
2(1 − γ)2

N2
L(P )

− 2(1 − γ)2

N2
L(P ⊙ P ) , (14)

where⊙ is the Hadamard (element by element) product.

Proof: See the Appendix.
In many gossip algorithms, the convergence time is related

to the relaxation time of a certain Markov chain associated to
the algorithm. In our case the time to consensus is related to
the largest eigenvalue of the matrixλ1(E[W (t)T (I−J)W (t)]),
and we can derive a bound using the Poincaré inequality [16],
[17].

Lemma 3 (Simple eigenvalue bound)We have

1

1 − λ1(E[W (t)T (I − J)W (t)])
≤ 2γ(1 − γ)

min{Pij}
(15)

Proof: We must find the largest eigenvalue ofW ′ −W ′′:

W ′ − W ′′ = I − J − 2γ(1 − γ)

N
L(P ) − (1 − γ)2

N2
L(P )2

− 2(1 − γ)2

N2
L(P ) +

2(1 − γ)2

N2
L(P ⊙ P )

(16)

Note that1 is an eigenvector for each term in (16), and in
particular that1 corresponds to the only non-zero eigenvalue



of J . Therefore the eigenvectors ofW ′ − W ′′ are equal to0
and the eigenvalues of

I − 2γ(1 − γ)

N
L(P ) − (1 − γ)2

N2
L(P )2 − 2(1 − γ)2

N2
L(P )

+
2(1 − γ)2

N2
L(P ⊙ P ) . (17)

The spectral radius of the Laplacian matrixL(P ) is
bounded. In particular, the eigenvalues of the Laplacian matrix
are bounded bymax{|λk(L(P ))|} ≤ 2N [18]. First, we can
combine the last two terms to get− 2(1−γ)2

N2 L(P − P ⊙ P ).
Since all entries ofP are upper bounded by1, the matrix
P −P ⊙P has all positive entries. Since we are interested in
an upper bound on the second largest eigenvalue of the matrix
in (17), we will ignore the negative terms corresponding to
L(P − P ⊙ P ) andL(P )2.

We therefore letµ = 2γ(1 − γ) and focus on the second
largest eigenvalue of the matrix

Q = I − µ

N
L(P ) . (18)

This matrix corresponds to a Markov chain with the uniform
stationary distribution, and thus we are interested in bounding
the mixing time of this Markov chain. In particular, we would
like to lower bound the spectral gap1 − λ2(Q).

In order to bound the spectral gap, we will use the Poincaré
inequality [16] and method of canonical paths [17] which has
been useful in other gossip algorithm analyses [4], [19]. For
each pairi, j of states thecapacityof a directed edgeei,j is

C(e) = π(i)Q̄ij . (19)

We also define ademandD(i, j) = π(i)π(j) for each pair of
nodes.

A flow F is method of simultaneously routing all the
demands{D(i, j)} from i to j for all pairs i, j. That is
F : P → R

+ is a function on the setP of all simple paths
on the transition graph corresponding toQ that satisfies the
demand:

∑

p∈Pij

F (p) = D(i, j) , (20)

wherePij denotes all the paths fromi to j. The lengthℓ(·)
of F is the longest pathp for which F (p) 6= 0.

The inequality hinges on finding a flow that does not cause
route too much more on each edge than its capacity. Theload
induced byF on an edgee is total flow routed across that
edge:

f(e) =
∑

p∈Pij :e∈p

F (p) (21)

The costof a flow F is the maximum overload of any edge:

ρ(F ) = max
e

f(e)

C(e)
, (22)

The Poincaré inequality [17] gives an upper bound on the
inverse spectral gap ofQ:

1

1 − λ2(Q)
≤ ρ(F )ℓ(F ). (23)

Intuitively, if there are no ’bottlenecks’ on the transitions for
every pair of states, the chain will mix quickly. Any flowF
gives an upper bound that depends on the costρ(F ) of its
most congested edge.

We can construct a trivial flow for our algorithm to get the
desired bound. The demand on each edge(i, j) is 1/N2, so we
can simply route1/N2 on the direct edge(i, j). The capacity
of (i, j) is Qij/N = µPij/N

2 so the congestion is simply
ρ(F ) = µ/ min{Pij}.

B. Almost Sure Convergence

The following proposition indicates that the shout gossip
algorithms achieve consensus with probability one,i.e., the
shout gossip achieves consensus almost surely.

Proposition 1 (Almost sure convergence)The probabilistic
broadcast gossip algorithm converges, almost surely, to a
consensus

P

(

lim
t→∞

x(t) = c1
)

= 1 (24)

for some random variablec ∈ R.

Proof: We will make use of the following corollary to
prove the almost sure convergence of the proposed algo-
rithm [20] (the almost sure convergence of (possibly) non-
stationary consensus algorithms with stochastic disturbances is
given in [21],i.e., almost sure convergence of linear consensus
algorithms in its most general form).

Corollary 1 Assume that for anyi ∈ V , we have that
Wii(t) > 0 almost surely. IfGW is strongly connected, then
W (t) achieves probabilistic consensus.

We now from the definition of the algorithm that for alli,
Wii(t) = 1 > 0. Moreover, from Lemma 2, we have that

Wjj = 1 − 1 − γ

N

N
∑

i=1,i6=j

Pij > γ , (25)

implying that Wjj > 0, where the inequality in the above
follows from the fact that||P[j]||1 − Pjj < N sincePij < 1.
Moreover, we have, forj 6= i,

Wji =
1 − γ

N
Pji > 0 (26)

sincePji > 0 andγ < 1. Thus, we have thatWji > 0 for all
i, j indicating thatW is strongly connected and concluding
the proof.

C. Convergence in Expectation

We consider the convergence in expectation of the shout
gossip algorithm. The next result reveals that, although the sum
is not preserved per iteration, it is preserved in expectation.



We consider the initial state as deterministic, and hence all
expectations are averaging the mixing matrices only.

The following theorem discusses the expectation of the
limiting random vector, i.e., the expected value ofx(t) as t
tends to infinity.

Proposition 2 (Convergence in expectation)The
expectation of the limiting random vector is given by

E

{

lim
t→∞

x(t)
}

= N−111T x(0). (27)

Proof: Suppose|xi(0)| ≤ U < ∞ from someU and all
i. Recall thatW1 = 1 and 1T W = 1T . Thus, W is non-
expanding [22], [23] indicating that|xi(t)| ≤ U for all t ≥ 0
andi. Using dominated convergence theorem for bounded and
converging random variables, we have

E

{

lim
t→∞

x(t)
}

= lim
t→∞

E{x(t)} = lim
t→∞

W tx(0) (28)

since

x(t) =

t−1
∏

k=0

W (k)x(0) (29)

E{x(t)} =
t−1
∏

k=0

E{W (k)}x(0) (30)

E{x(t)} = W tx(0) (31)

where the first line follows from the fact thatW (t)’s are
independent and the second line is due to the fact that
E{W (t)} = W , ∀t ≥ 0. We, then, need to characterize
the limiting behavior of the average matrixW . The Perron-
Frobenius theorem applied to stochastic matrices asserts that
(provided all entries ofW are strictly positive, see Lemma 2)
the eigenvalueλ1(W ) = 1 is simple and all other eigenvalues
of W satisfy |λi(W )| < 1, ∀i = {2, . . . , N}. Thus [2],

lim
t→∞

W t = N−111T (32)

concluding the proof of this Lemma.

D. Convergence Time

We now turn to analyzing the time for the algorithm to reach
consensus. To define this more precisely for our non-sum-
preserving algorithms, we modify a definition of [2] which is
also the definition given in [7].

Definition 1 (Convergence time)For an ǫ > 0, the ǫ-
consensus time of an algorithm is the earliest time at which
with probability 1 − ǫ the deviation of the vectorx(k) from
its mean, normalized by the initial deviation, is less thanǫ:

T (N, ǫ) = sup
x(0)

inf

{

t : P

( ‖x(t) − Jx(t)‖2

‖x(0) − Jx(0)‖2

≥ ǫ

)

≤ ǫ

}

,

(33)

where‖·‖2 denotes theℓ2 norm.

Proposition 3 (Consensus time)Theǫ-consensus time of the
algorithm is upper bounded:

T (N, ǫ) = O

(

log ǫ−1

min{Pij}

)

. (34)

Proof: We start with the methods of Boyd et al. [2,
Lemma 2] applied to the deviation vectorβ(t) = x(t)−Jx(t),
as in the the non-sum preserving consensus algorithms of [7]:

E[‖β(t)‖2
2] ≤ λ1(W

′ − W ′′)2t ‖β(0)‖2
2 . (35)

Now Markov’s inequality yields

P

( ‖β(t)‖2

‖β(0)‖2

≥ ǫ

)

≤ ǫ−2 E[‖β(t)‖2
2]

‖β(0)‖2
2

(36)

= ǫ−2λ1(W
′ − W ′′)2t . (37)

And therefore theǫ-convergence time satisfies:

T (N, ǫ) = O

(

log ǫ−1

λ1(W ′ − W ′′)−1

)

. (38)

Finally, we can apply Lemma 3:

T (N, ǫ) = O

(

log ǫ−1

min{Pij}

)

, (39)

yielding the claimed result.

IV. D ISCUSSION

For the simplified model of reception probability:

Pij ∝ P
Dβ

ij

. (40)

In this model, for a network ofN nodes with constant density,

min{Pij} ∝ 1

Nβ/2
, (41)

since the maximum distance for any pair of nodes scales like√
N and Lemma 3 gives the convergence bound

T (N, ǫ) = O
(

Nβ/2 log ǫ−1
)

. (42)

If this reception probability is simply proportional to the
expected received power so that the parameterβ represent
the path loss exponent, then we can see that forβ = 2 the
consensus time is linear in the number of nodes. This is per-
haps unsurprising, since the expected number of connections
at a distanceO(

√
N) is constant, which means the graph is

very well connected in expectation. For largerβ the number
of long-distance connections becomes smaller, leading to an
increase in the consensus time.

We simulated the algorithm for a moderate-sized network of
100 nodes. Figure 1 shows the deviation from the consensus
value as a function of the number of transmissions for different
values ofγ andβ. The vertical axis is on a logarithmic scale.
It is clear that asβ increases the convergence is slower, but
also that choosing largerγ leads to faster convergence.

However, choosing largerγ may lead to worse variance in
the consensus value from the true mean, as shown in Figure 2.
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Fig. 1. Average squared distance from consensus value as a function of time
for γ = 0.2, 0.3, 0.4. In each plot three curves are given forβ = 2, 3, 4.

As γ increases, the variance of the consensus value increases
significantly. This is because aggressive updating combined
with the large neighborhoods given by smallerβ result in more
variance within the short time to convergence.
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Fig. 2. MSE of consensus value from the true average as a function of γ.

It should be noted here that the bound from Lemma 3 can be
greatly overestimating the convergence time for large path-loss
exponents. This is because the routing in the Poincaré method
is only using the direct links for any pair of nodesi, j which
can have very small capacity for largeβ. It is easy to construct
an alternative flow that routes on the nearest neighbor nodes
on the grid with constant edge capacities,N3/2 pairs of nodes
using each edge and length

√
N which yields the additional

bound

T (N, ǫ) = O
(

N2 log ǫ−1
)

(43)

for anyβ, (and further for anyPij that is constant for constant
distances) and therefore the previous convergence bound (42)
should only be used forβ ≤ 4. An improved bounding

technique would involve a hybrid path routing between the two
constructions we presented: using multi-hopping paths where
the hop-length would be optimized as a function of the path-
loss exponentβ. This construction remains is left for the full
version of this paper.

A key feature of our analysis is that the convergence time
can be shown to depend on the probabilitiesPij and that the
bounds on the convergence time can be optimized for spe-
cific models of the connection probabilities. In intermediate-
size networks broadcast-style algorithms may reach consensus
faster than more complicated schemes based on pairwise
averaging [7]. By adding in the possibility of a few long-range
connections via the matrixP , the algorithm can converge
much faster. A more complete analysis would include bounds
on the error in consensus as in [7] and simulation results for
different network topologies and signaling models.

APPENDIX

We gather the proofs of the technical lemmas here.

A. Proof of Lemma 1

Proof: We consider the proof of the first item. LetE[j](t)
denote the event thatW[j]1 = 1. Note that

P(W (t)1 = 1) = P(∩N
j=1E[j](t)). (44)

Thus, we need to show thatP(W[j]1 = 1) = 1, for all j =
1, 2, . . . , N :

P(E[j](t)) = N−1
N
∑

i=1

P(E[j](t)|A(t) = i) (45)

= N−1
N
∑

i=1

P(E[j](t)|A(t) = i, W[j] = ej)(1 − Pij)

+ P(E[j](t)|A(t) = i, W[j] = γej + (1 − γ)ei)Pij

(46)

= N−1
N
∑

i=1

Pij + (1 − Pij) (47)

= 1 (48)

sinceP(E[j](t)|A(t) = i, W[j] = γej + (1 − γ)ei) = 1 and
P(E[j](t)|A(t) = i, W[j] = ej) = 1 as

(γej + (1 − γ)ei)1 = ej1 = 1. (49)

This completes the proof of the first claim. Consider now
E(j)(t) denote the event that thej-th column ofW (t) sums
to one,i.e., 1T W(j)(t) = 1. Note that, forj = i,

P(E(j)(t)) = N−1
N
∑

i=1

P(E(j)(t)|A(t) = i) (50)

= N−1
N
∑

i=1

N
∏

j=1,j 6=i

(1 − Pij) (51)



since the eventP(E(j)(t)|A(t) = i) for j = i, equals unity if
no node successfully receives the shouted value. Moreover,

P(E(j)(t) : j = i|A(t) = i) = 1 (52)

P(E(j)(t) : j 6= i|A(t) = i) = 1 (53)

P(∩N
j=1E(j)(t)) = 1 (54)

concluding the proof of the second claim.

B. Proof of Lemma 2

Proof: Let W (i, K) be the matrixW (t) for transmitteri
and collection of receiversK. We have

P (W (t) = W (i, K)) =
∏

j∈K

Pij

∏

j∈Kc\{i}

(1 − Pij) . (55)

From the definition of the state update,

W (i, K) = γI + (1 − γ) diag(eKc) + (1 − γ)eKeT
i (56)

= I − (1 − γ) diag(eK) + (1 − γ)eKeT
i . (57)

This matrix has1 on the diagonal elements corresponding
to Kc and γ on the elements corresponding toK. The i-th
column contains(1−γ) in the rows corresponding toK. Note
thatP(j ∈ K | i) = Pij , which will make taking expectations
easier. To calculate expectations we first take the expectation
over K for fixed i and then the expectation overK.

Calculating W . Taking the expectation overK for fixed i,
we get:

EK [W (i, K) | i] = I − (1 − γ) diag(pi) + (1 − γ)pie
T
i

(58)

Then taking an expectation overi we get:

E[W (t)] = I − 1 − γ

N

(

diag

(

N
∑

i=1

pi

)

− P

)

(59)

= I − 1 − γ

N
L(P ) . (60)

Calculating W ′. To calculate W ′ we first calculate
W (i, K)T W (i, K):

W (i, K)T W (i, K)

= I − 2(1 − γ) diag(eK) + (1 − γ)
(

eKeT
i + eie

T
K

)

+ (1 − γ)2 diag(eK)

− (1 − γ)2
(

eKeT
i + eie

T
K

)

+ (1 − γ)2|K|eie
T
i

= I − (1 − γ2) diag(eK) + γ(1 − γ)
(

eKeT
i + eie

T
K

)

(1 − γ)2|K| diag(ei) . (61)

Now taking the expectation overK we obtain

EK [W (i, K)T W (i, K) | i]

= I − (1 − γ2) diag(pi) + γ(1 − γ)
(

pie
T
i + eip

T
i

)

+ (1 − γ)2 ‖pi‖1 diag(ei) . (62)

Finally, taking the expectation overi:

E[W (t)T W (t)]

= I − 1 − γ2

N
diag(P1) +

γ(1 − γ)

N
(P + PT )

+
(1 − γ)2

N
diag(P1)

= I − 2γ(1 − γ)

N
L(P ) (63)

Calculating W ′′. First we calculateW (i, K)T1:

W (i, K)T1 = 1− (1 − γ)eK + (1 − γ)|K|ei . (64)

This gives

W (i, K)T11T W (i, K)

= 11T − (1 − γ)(1eT
K + eK1T )

+ (1 − γ)|K|(1eT
i + ei1

T )

+ (1 − γ)2eKeT
K

− (1 − γ)2|K|(eKeT
i + eie

T
K)

+ (1 − γ)2|K|2 diag(ei) . (65)

Let 1ij denote the indicator variable nodej receiving nodei’s
transmission.. Now taking expectations overK:

E[(1eT
K + eK1T ) | i] = (1pT

i + pi1
T ) (66)

E[|K|(1eT
i + ei1

T ) | i] = ‖pi‖1 (1eT
i + ei1

T ) (67)

E[eKeT
K | i] = E





∑

j,k

1ij1ikeje
T
k





= pip
T
i − diag(pi ⊙ pi)

+ diag(pi) (68)

E[|K|(eKeT
i + eie

T
K) | i] = E





∑

j,k

1ij1ik(eke
T
i + eie

T
k )





=
∑

j,k

PijPik(eke
T
i + eie

T
k ) −

∑

j

P 2
ij(eje

T
i + eie

T
j )

+
∑

j

Pij(eje
T
i + eie

T
j )

= ‖pi‖1

(

pie
T
i + eip

T
i

)

−
(

(pi ⊙ pi)e
T
i + ei(pi ⊙ pi)

T
)

+
(

pie
T
i + eip

T
i

)

(69)

E[|K|2 diag(ei) | i] = E





∑

j,k

1ij1ik diag(ei)



 (70)

=
∑

j,k

PijPik diag(ei) −
∑

j

P 2
ij diag(ei)

+
∑

j

Pij diag(ei)

=
(

‖pi‖2
1 − ‖pi ⊙ pi‖1 + ‖pi‖

)

diag(ei) (71)



Taking the expectation with respect toi yields:

NE[(1eT
K + eK1T )] = PT11T P (72)

NE[|K|(1eT
i + ei1

T )] = PT11T P (73)

NE[eKeT
K ] = P 2 − diag((P ⊙ P )1)

+ diag(P1) (74)

NE[|K|(eKeT
i + eie

T
K)] = diag(P1)P + P diag(P1)

+ 2P − 2(P ⊙ P ) (75)

NE[|K|2 diag(ei)] = diag(P1)2

− diag((P ⊙ P )1)

+ diag(P1)) (76)

Putting it together:

E[W (t)T JW (t)]

= J +
(1 − γ)2

N2

(

P 2 − diag(P1)P − P diag(1P )

+ diag(P1)2 + 2 diag(P1)

+ 2P ⊙ P − 2P

− 2 diag((P ⊙ P )1)

)

(77)

= J +
(1 − γ)2

N2
L(P )2 +

2(1 − γ)2

N2
L(P )

− 2(1 − γ)2

N2
L(P ⊙ P ) (78)

concludes the proof.
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[10] D. Üstebay, B. Oreshkin, M. Coates, and M. Rabbat, “Greedy gossip
with eavesdropping,” Submitted toIEEE Trans. Signal Processing,
March 2009.

[11] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus inad hoc wsns
with noisy links – part i: Distributed estimation of deterministic signals,”
IEEE Trans. Signal Processing, vol. 56, no. 1, pp. 350–364, Jan. 2008.

[12] F. F. P. Frasca, R. Carli and S. Zampieri., “Average consensus on
networks with quantized communication,” inSubmitted for publication,
2008.

[13] S. Kar and J. Moura, “Distributed consensus algorithmsin sensor
networks with imperfect communication: Link failures and channel
noise,” IEEE Trans. Signal Processing, vol. 57, no. 1, pp. 355–369,
Jan. 2009.

[14] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic
gossip: Efficient averaging for sensor networks,”IEEE Trans. Signal
Process., vol. 56, no. 3, Mar. 2008.

[15] A. Molisch, Wireless Communications. John Wiley and Sons, 2005.
[16] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of

Markov chains,” inAnnals of Applied Probability, vol. 1, 1991.
[17] A. Sinclair, “Improved bounds for mixing rates of Markov chains and

multicommodity flow,” in Combinatorics, Probability and Computing,
vol. 1, 1992.

[18] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time delays,”IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sept. 2004.

[19] A. D. Sarwate and A. G. Dimakis, “The impact of mobility on gossip
algorithms,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), 2009.

[20] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over
large scale networks,”IEEE Journal on Selected Areas in Communica-
tions, vol. 26, no. 4, pp. 634 – 649, 2008.

[21] T. C. Aysal and K. E. Barner, “On the convergence of perturbed nonsta-
tionary consensus algorithms,” inProceedings of the IEEE Conference
on Computer Communications (INFOCOM), 2009.

[22] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributedaverage
consensus using dithered quantization,”IEEE Transactions on Signal
Processing, vol. 56, no. 10, pp. 4905–4918, Oct. 2008.

[23] ——, “Distributed average consensus using probabilistic quantization,”
in Proc. IEEE Statistical Signal Processing Workshop, Madison, WI,
Aug. 2007.


