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Abstract—Reaching consensus in a network is an important geometric graphs. The proposed “geographic gossip” algo-
problem in control, estimation, and resource allocation. Wiile  rithm combines gossip with geographic routing to improve
many algorithms focus on computing the exact average of the the convergence rate of random gossiping [3]. Similar to
initial values in the network, in some cases it is more impownt . .
for nodes to reach a consensus quickly. In a distributed systn the standard gossip algor't.hm’ a node randomly wakes up,
establishing two-way communication may also be difficult or Chooses a node randomly in the whole network, rather than
unreliable. In this paper, the effect of the wireless mediumon in its neighborhood, and performs a pairwise averaging with
simple consensus protocol is explored. In a wireless envinment, this node. Geographic gossiping increases the diversity of
a node’s transmission is a broadcast to all nodes which can every pairwise averaging operation. The authors show Heat t

hear it, and due to signal propagation effects, the neighbdmod L S . 3/9
size may change with time. A class of non-sum preserving COMmmunication complexity is in the order 6{N*/?\/log N),

algorithms involving unidirectional broadcasting is extended to a  Which is an improvement with respect to the Standard_ gos-
time-varying connection model. This algorithm converges lmost  siping algorithm. More recently, a variety of the algorithm

surely and its expected consensus value is the true averag. that “averages along the way” has been shown to converge
simple bound is given on the convergence time. in O(N log N) transmissions [4]. Nedic et. al [5] presented
constrained consensus algorithms where the estimate bf eac
agent is restricted to lie in a different constraint set. The
Reaching consensus is an important building block underlyroblem of reaching a consensus and rate of convergence in th
ing more complex protocols in distributed networked systenmvalues of a distributed system with time-varying connéigtiv
In particular, consensus is critical for synchronizatioon- in the presence of delays is studied in [6].
trol, data fusion, and load balancing. Randomized consensuA second issue with pairwise averaging is that a two-way
algorithms have received significant attention in recerirye link must be established, making these protocol vulnertble
motivated by emerging sensor network applications. In thiscket collisions. To overcome the drawbacks of the stahdar
paper we study the effect of physical layer signal propagatipacket based gossip algorithms, a broadcast based gagsipin
effects on the convergence speed of an asynchronous bragderithm for wireless sensor networks was also recentig-st
casting “gossip” algorithm for achieving consensus. Casas ied [7]. In that work a node in the network wakes up uniformly
algorithms perform iterative updates of a state estimaté urat random according to the asynchronous time model and
the network achieves consensus. The central feature ofpgo$soadcasts its value. This value is successfully receiyettid
algorithms is the asynchronous time model in which eactodes in the predefined radius of the broadcasting nicele,
update only involves a subset of the sensors (often only.twapnnectivity radius. The nodes that have received the broad
The nodes in the networks involved in each update are usuaibsted value update their own state value and the remaining
neighbors, and in each update the nodes update their staddes sustain their value. It is shown through simulatibias t
via a simple linear combination of their values. From thethe broadcast gossip achieves a consensus much faster than
introduction in Tsitsiklis’s thesis [1], gossip and conses both random and geographic gossip algorithms, especialy f
algorithms have been investigated for several application moderate network sizes.
distributed control, sensor networks and distributed aign We are interested in the benefits that can be obtained
processing. from the broadcast nature of the wireless medium on the
One issue with pairwise averaging is that local commuwonvergence of distributed message-passing algorithms. O
nication with a small number of nodes may be inefficienapproach to using the wireless medium in consensus is to
For example, the communication complexity of the randonenable physical-layer cooperation [8], [9], but this gedigr
ized gossip algorithm of [2] (measured by number of radi@quires information-theoretic assumptions involvingdwec-
transmissions to drive the estimation error to witRi(NV—%), tors of numbers to be averaged. Related recent work uses the
for any a« > 0 ) on the order of©(N?log N) for random wireless medium to eavesdrop other nodes values [10], or to

I. INTRODUCTION



deal with noisy links and quantization effects [11]-[13]this approximatelyN . clock ticks per unit of absolute time but we
paper we only exploit the broadcast benefit of the physicaill always measure time in number of ticks of this (virtual)
medium without worrying about these extra complicationgjlobal clock. We therefore think of time as discretized with
they remain to be investigated in future work. the interval F;; Z;11) corresponds to thé-th timeslot. We

In particular, we are interested in how fading can evernyualtan adjust time units relative to the communication time so
enable opportunistic longer-range transmissions. Depgndthat only one broadcast event occurs in the network at each
on the fading statistics, it may be possible for a the brostdcéime slot with high probability.
message of one node to reach other nodes far away in the
network. Enforcing a multihop or local connection model a§. Graph Model

in [3], [4], [10] corresponds to the assumption that long- We model our wireless sensor network as a gréplvith

distance connections are wasteful in terms of power or thﬁtvertices or nodes distributed in the plane at locatios :

the attenuation of the signal due to long distances. . g - . .
We analyze a probabilistic version of the broadcast—basleg [N]} in R”. The N-node topology ofi/ at time stept is

gossip algorithm originally introduced in [7] and deteneminremesemmj by tha> IV distance matrbd, where fori 7 j,

. . D;; is the distance between nodéesand ;. For example, we

analytical convergence results. In particular, we show tha :
. may takeG to be the random geometric graph, where ifie
converges almost surely and that its expected consenaus val : . . .
. Sensor locations are chosen uniformly and independently in
is the true average. The actual consensus value may vary abou
o o . unit square area.

the true mean, which is a limitation of this and other non-
sum-preserving algorithms. We defer this analysis for tike f
version of this paper, but the techniques of [7] apply diyect
to this model as well. Even though the consensus value mayAt time slot¢ > 0, each nodei = 1,2,...,N has an
be different from the true mean, we provide a simple bound @stimater; (¢) of the global average, and we usg) to denote
the time to reach consensus. All our results hold for genethe N-vector of these estimates. The ultimate goal is to use
graphs and fading models. We show that for the special casdlef minimal amount of communication to drive the estimate
power-law decaying probability of successful communmati z(t) as close as possible to the average veg{on1, where

the convergence rate may be surprisingly fast. 1 is the vector of alll’s and

L X
z(0) = N > 2:(0). (2)
i=1

D. Average Consensus

Il. PRELIMINARIES AND SHOUT GOSSIPALGORITHM
In the following, we briefly discuss the graph and time

models adopted in this paper. Then, we describe briefly the dée ause our algorithms are randomized, the quantity for
tributed average consensus problem along with the propo§e§ 0 is a random vector even though’we assunt@) is

consensus algorithm. L
deterministic.

A. Notation
We will denote the alll’s vector by1 and.J = +117. E. Broadcast consensus protocol

The symbols?(-) andE[] denote probability and expectation. Suppose at time stefy nodei € A" = {1,2,..., N} clock

We write e; for the i-th elementary vector, and for a subseficks. Then node activates and the following events occur in
K C [N] we writeeg = ), . e for the vector withl’s in  the network:

the coordinate$< and0’s elsewhere. We writd(® = [N]\ K
for the complement of< in [IV]. We write P for the matrix
(Pi;), andp; for the i-th row or column of P (note that by
definition P is symmetric). We will often think ofP as the
adjacency matrix of a weighted graph. The Laplacia)

1) Nodei shouts/broadcasts its current state vatyé;) over
the wireless medium.

2) The shouted value is successfully received by the node
j in the network with probability?;; that is a mono-
tonically decreasing functiorf(-) of the distanceD;;

for Pis between nodes andj.
L(P) = diag(P1) — P . (1) 3) LetJ denote the set of nodes that successfully received
) the shouted state valug(¢). Each nodej € J updates
B. Time Model its own state value according to
We use the asynchronous time model, which is well- .
matched to the distributed nature of sensor networks [2], j(t+1) =yz;(t) + (L =zi(t), j€ T (3)
[14]. In this model, each sensor node is assumed to have a where~ € (0,1) is the mixing parameter of the algo-
clock which ticks independently according to a rat€oisson rithm.

process. Consequently, the inter-tick times are expoanti 4) The remaining nodes in the netwoile., the nodes that
distributed and independent across nodes and over time. Thi  did not successfully receive the shouted value, including

process is equivalent to a single clock whose ticking times ; ypdate their state value as
form a Poisson process of rat®du. Let Z; be the the .
arrival times of this global process. In expectation, thare zj(t+1)=z;@t), jeN-J. (4)



F. Impact of different fading models and

One example for the reception probabiliy; is to assume T T 1 S
a lognormal shadowing [15] so that the signal-to-noise (BNR P (1 W) =1 ) =N Z ‘ H ‘(1 - By) (11)

at j from a transmission by is given by i=1j=1,j#i
for all ¢ > 0.
logSNR=A —alogD;; + S, (5) -
whereq is the pathloss and is the shadowing effect. The Proof: See the Appendix. |

probability for a node to be above a given SNR threshold The above Lemma reveals two important properties of the
(indicating successful reception) can serve as a modepfor gossip algorithm: 1§1 for somec < R is a fixed point of the
A simpler model is to set,; inversely proportional to a 9OSSip algorlth_m. If the algorithm converges to a consensus

transmit powerp: it also shows that the sum (and therefore the average) of the
p. P 6 vector of node values is very unlikely to be preserved at each
i & Do ©) step. In fact, the sum is preserved only when none of the nodes

Y in the network receives the value.

In this simplified model, for a network ofV' nodes with e pext lemma describes the expected values of various
constant density, the reception probability for the two MO§,nctions of the weight matrice® (¢) which will be useful

. R . _ ons of
distant nodes scales lik¥ ﬁ/_' For a network with constant j, geriving eigenvalue bounds and convergence resultshtor t
density, the transmit power is typically scaled down to saBgorithm.

power, which would give a more complicated dependence on

N.
Lemma 2 We have the following:
. 1_
G. Matrix updates wa EW ()] =1 — T'VL(P) (12)
Let A(t) denote the random index of the node of which the A 29(1 — )
internal clock ticked. Formally, let(t) denote the vector of ~ W' S E[W ()W ()] =1 — %L(P) (13)
state values at the end of time-stotThen, the network-wide A (1—7)?
update is given by W" S EW )T ITW ()] = J + E L(P)?
_ )2
2(t+1) = W(H)a(t) ) 200 )
where the random matri¥/(¢) is characterized as following: 9
2 o), )
PW(t) =vej + (1 —yeilAlt) =i) = P;  (8) N2 ’
and where® is the Hadamard (element by element) product.
PWi(t) =e;|A(t) =i) =1— Py 9 .

(Wi (8) = e At) =) J ©) Proof: See the Appendix. [
where P;; = 0, W[; denotes thej—th row of the matrixiW’ In many gossip algorithms, the convergence time is related
ande; denotes the row vector of zeros only which teh to the relaxation time of a certain Markov chain associated t
element is one. the algorithm. In our case the time to consensus is related to

the largest eigenvalue of the matdix(E[W (t)T (I—J)W (t)]),
I1l. ANALYSIS OF THE ALGORITHM and we can derive a bound using the Poincaré inequality [16]

[17].

We now turn to the analysis of the algorithm. In subsection
[1I-A we provide some properties of the averaging matrides.
I11-B we prove that the algorithm converges almost suretyg] a Lemma 3 (Simple eigenvalue bound)We have
in 1lI-C that in expectation it converges to the true averdge 1 2v(1 — )
II-D we provide a simple bound on the convergence time of T X (E[W (1) (I — /)W (¢)]) ~ min{P;}
the algorithm in terms of the matri®R.

(15)

Proof: We must find the largest eigenvalueldt’ — W":
A. Averaging Matrix Properties

/ " o__ 2’7(1 _ 7) (1 _ 7)2 2
W= W" =1 —J = = L(P) - =5~ L(P)

2(1—~)?
N2

The following results reveal important properties regagdi
the random averaging matric8V (¢) : ¢ > 0}. 201 - V)QL(P) n

7 L(P® P)

(16)

Note thatl is an eigenvector for each term in (16), and in
PWH1=1)=1 (10) particular thatl corresponds to the only non-zero eigenvalue

Lemma 1 The random averaging matrid/(¢) obeys



of J. Therefore the eigenvectors &’ — 1" are equal td) The Poincaré inequality [17] gives an upper bound on the

and the eigenvalues of inverse spectral gap a@p:
29(1—9) (1-7)? 2 2(1—9)? _ Y L PWF 23
[~ = L(P) = 55— L(P)* = =5~ L(P) @) = p(F)U(F). (23)
N 2(1 _QW)QL(PQ P) . (17) Intuitively, if there are no 'bottlenecks’ on the transitmfor
N every pair of states, the chain will mix quickly. Any flow

. i . gives an upper bound that depends on the @d#t) of its
The spectral radius of the Laplacian matri(P) is | et congested edge.

bounded. In particular, the eigenvalues of the L_aplaciatlima We can construct a trivial flow for our algorithm to get the
are bounded bynax{|A.(L(P))[} < 2N [18]. First, we can gegjrad hound. The demand on each edgg) is 1/N?2, so we

; 2(1—~)?
combine the last two terms to get* - L(P — P © P).  ¢an simply routel /N2 on the direct edgéi, j). The capacity

Since all entries ofP are upper bounded by, the matrix f (i,5) is Qi;/N = uP;;/N? so the congestion is simply
P — P® P has all positive entries. Since we are interested MF) = p/ min{P;;}. m

an upper bound on the second largest eigenvalue of the matrix
in (17), we will ignore the negative terms corresponding t8. Almost Sure Convergence

L(P—P©®P)andL(P). The following proposition indicates that the shout gossip
dalgorithms achieve consensus with probability one, the

We therefore letu = 2v(1 — ) and focus on the secon : .
shout gossip achieves consensus almost surely.

largest eigenvalue of the matrix

Q=1- ﬂL(P) . (18) Proposition 1 (Almost sure convergence)lhe probabilistic

. ] N o _ broadcast gossip algorithm converges, almost surely, to a
This matrix corresponds to a Markov chain with the uniformggnsensus

stationary distribution, and thus we are interested in blonum p (lim () = cl) -1 (24)
the mixing time of this Markov chain. In particular, we would t—o0
like to lower bound the spectral gdp— A2 (Q). for some random variable € R.

In order to bound the spectral gap, we will use the Poincaré Proof: We will make use of the following corollary to
inequality [16] and method of canonical paths [17] which hasrove the almost sure convergence of the proposed algo-
been useful in other gossip algorithm analyses [4], [19}. Féithm [20] (the almost sure convergence of (possibly) non-
each pairi, j of states thecapacityof a directed edge; ; is  stationary consensus algorithms with stochastic dishoesis

Cle) = 7(1) Qs (19) g:ven_ in [21_],i._e., almost sure convergence of linear consensus
gorithms in its most general form).
We also define @emandD(i, j) = w(i)w(j) for each pair of
nodes. Corollary 1 Assume that for any € V, we have that

A flow F is method of simultaneously routing all theW“(t) > 0 almost surely. |Gy is strongly connected, then

demands{D(i,j)} from i to j for all pairsi,j. That is W(t) achieves probabilistic consensus.

F:P — R* is a function on the seP of all simple paths we now from the definition of the algorithm that for all

on the transition graph corresponding @that satisfies the yy,;(t) = 1 > 0. Moreover, from Lemma 2, we have that
demand:

N
1—
3 F(p)=D(i.j) . (20) Wiy=1-—= > Py>7. (25)
PEPij i=1,i#j
whereP;; denotes all the paths fromto j. The length¢(-) implying that W;; > 0, where the inequality in the above
of F is the longest patlp for which F(p) # 0. follows from the fact that|P; || — P;; < N sinceP;; < 1.

; Lo o Moreover, we have, foj # i,
The inequality hinges on finding a flow that does not cause

route too much more on each edge than its capacity.|Gdue W, = 1_Tiji >0 (26)

induced byF' on an edgee is total flow routed across that
edge: sinceP;; > 0 and~y < 1. Thus, we have that/;; > 0 for all
1,7 indicating thatW is strongly connected and concluding
fley=">Y_ Flp) (21) the proof. m
pEP;j:e€p

. . C. Convergence in Expectation
The costof a flow F' is the maximum overload of any edge: g P

We consider the convergence in expectation of the shout
p(F) = max f(e) ’ (22) gossip algorithm. The next fesullt rgveals that, aIFhough;tJm .
e Cle) is not preserved per iteration, it is preserved in expestati




We consider the initial state as deterministic, and hente Blroposition 3 (Consensus time)Thee-consensus time of the

expectations are averaging the mixing matrices only. algorithm is upper bounded:
The following theorem discusses the expectation of the loge!
limiting random vector, i.e., the expected valuext) ast T(N,e)=0 <WP}> : (34)
)

tends to infinity.
Proof: We start with the methods of Boyd et al. [2,

Lemma 2] applied to the deviation vectbft) = =(t) — Jx(¢),

as in the the non-sum preserving consensus algorithms of [7]

E[IB@)I] < MW =W B80)]5 . (35)

Proposition 2 (Convergence in expectation)lhe
expectation of the limiting random vector is given by

E {tlirgox(t)} — N11172(0). 27)

Now Markov’s inequality yields
Proof: Supposdz;(0)] < U < oo from someU and all 18] ElB®)II2]

i. Recall thatiwl = 1 and1”W = 17. Thus, W is non- ( 2 > e) <eP—— 2 (36)
expanding [22], [23] indicating thdt:; (£)| < U for all £ > 0 15C0)1l2 18(0)]13
and:. Using dominated convergence theorem for bounded and =e MW =W, (37)
converging random variables, we have

And therefore the-convergence time satisfies:

E { lim x(t)} = lim E{z(t)} = lim W'z(0)  (28) log e
t—o00 t—o00 t—o0 e =0 ———— . 38
since Tife) <)\1(W' - W”)_1> (38)
t—1 Finally, we can apply Lemma 3:
z(t) = [[ W(k)z(0) (29) log e~
o 0= (Gimy) )
E{z(t)} = H E{W (k)}z(0) (30) vyielding the claimed result. ]
k=0
E{z(t)} = W'z(0) (31) IV. DISCUssION

where the first line follows from the fact that/(t)s are ~ FOf the simplified model of reception probability:

independent and the second line is due to the fact that P P (40)
E{W({)} = W, V&t > 0. We, then, need to characterize Y ps

the limiting behavior of the average matrixX. The Perron- . Y . )
Frobenius theorem applied to stochastic matrices asseats {1 this model, for a network oV’ nodes with constant density,

(provided all entries ofV are strictly positive, see Lemma 2) "y 1 41
the eigenvalue\; (W) = 1 is simple and all other eigenvalues min{Py;} o« w57, (41)
of W satisfy [\;(W)| < 1,Vi={2,...,N}. Thus [2], since the maximum distance for any pair of nodes scales like
thm wt = N-1117 (32) Vv/N and Lemma 3 gives the convergence bound
2 —1
concluding the proof of this Lemma. [ T(N,e) =0 (Nﬁ/ loge ) : (42)
_ If this reception probability is simply proportional to the
D. Convergence Time expected received power so that the paramgteepresent

We now turn to analyzing the time for the algorithm to reacHi® path loss exponent, then we can see thatifer 2 the
consensus. To define this more precisely for our non-sufNSeNSUs time is linear in the number of nodes. This is per-

preserving algorithms, we modify a definition of [2] which id'@Ps unsurprising, since the expected number of connection
also the definition given in [7]. at a distanceD(V'N) is constant, which means the graph is

very well connected in expectation. For largeithe number
o ] of long-distance connections becomes smaller, leadingito a
Definition 1 _(Convergence t|.me)Eor an e > 0., the e- _increase in the consensus time.
consensus time of an algorithm is the earliest time at which\y, simulated the algorithm for a moderate-sized network of
with probability 1 — ¢ the deviation of the vectat(k) from 144 nodes. Figure 1 shows the deviation from the consensus
its mean, normalized by the initial deviation, is less than 4 e as a function of the number of transmissions for diffiér
lz(t) — Jx(t)]], - values ofy and 3. The vertical axis is on a logarithmic scale.
M = 6) = 6} *Itis clear that gsﬁ increases the convergence is slower, but
(33) also that choosing larger leads to faster convergence.
However, choosing largey may lead to worse variance in
where ||-[|, denotes the&, norm. the consensus value from the true mean, as shown in Figure 2.

T(N,e) = supinf{t P <
z(0)



Errorvs. time fory =02, 0.3, 0.4 technique would involve a hybrid path routing between the tw

| constructions we presented: using multi-hopping pathsrevhe

: the hop-length would be optimized as a function of the path-
: loss exponeng. This construction remains is left for the full

o s 1 15 2 s w4 version of this paper.

A key feature of our analysis is that the convergence time
can be shown to depend on the probabilitiég and that the
bounds on the convergence time can be optimized for spe-
cific models of the connection probabilities. In intermaeia
size networks broadcast-style algorithms may reach ceusen
faster than more complicated schemes based on pairwise
averaging [7]. By adding in the possibility of a few long-gen

connections via the matri¥’, the algorithm can converge
L - - much faster. A more complete analysis would include bounds
Number of ransmissions on the error in consensus as in [7] and simulation results for
different network topologies and signaling models.

Log of L, norm of deviation from consensus

Fig. 1. Average squared distance from consensus value axtofu of time
for v = 0.2,0.3,0.4. In each plot three curves are given fér= 2, 3, 4.

APPENDIX

As v increases, the variance of the consensus value increasgge gather the proofs of the technical lemmas here.
significantly. This is because aggressive updating contbine

with the large neighborhoods given by smajlaresult in more
variance within the short time to convergence. A. Proof of Lemma 1

Proof: We consider the proof of the first item. L& (t)
denote the event that’;;1 = 1. Note that

Limiting MSE vs.yforp=2,3, 4
T T T

——
——-pos3
B=1] P(W(t)1 = 1) = P(N}_, &;(1)). (44)
ossf Thus, we need to show th&(W;;1 = 1) = 1, for all j =
. 1,2,...,N:
—g 03 N
P(Ey(1) = NP> PEHBIAR) = i) (45)
5 =1
é 0.2 N
sl = N~' Y P&y (AR = i, W) = e)(1 = Py)
i=1
0.1 —+ P(g[j] (t)|./4(t) = i, W[j] = ’Yej + (1 — 'y)el)Pl
(46)
00%2 0.‘3 0‘.4 0‘5 Mixing pO;:iame‘erv 0‘.7 0‘8 0‘.9 1 N
=N"'Y P;+(1-Py) (47)
Fig. 2. MSE of consensus value from the true average as aidanof . i=1
=1 (48)

It should be noted here that the bound from Lemma 3 can be ,
greatly overestimating the convergence time for largemsh  >"c€ P (€17 (OA() =i, Wi = ve; + (1 = 7)e;) = 1 and
exponents. This is because the routing in the Poincareadetly (€11 ()IA() =i, Wi = ¢j) =1 as
is only using the direct links for any pair of nodesg which (vej + (1 —7)e;)l = e;1 = 1. (49)
can have very small capacity for largelt is easy to construct ] ) _
an alternative flow that routes on the nearest neighbor node¥S completes the proof of the first claim. Consider now
on the grid with constant edge capacitidg’/? pairs of nodes £(;)(f) denote the event that thpth column wa(t) sums
using each edge and lengthN' which yields the additional 10 One.i.e. 17W{;(t) = 1. Note that, forj =i,
bound N
T(N,e) = O (N? 1oge’1) (43) PlEH®) = N ; PEGHBIAE) =9) (50)
for any 3, (and further for anyPij that is constant for constant N
distances) and therefore the previous convergence bo@)d (4 =N"!

should only be used fop < 4. An improved bounding i

N
II a-ry (51)

1j=1,j#i



since the evenP (&, (t)|A(t) = i) for j = 4, equals unity if

no node successfully receives the shouted value. Moreover,

P(EG)(t) -5 = ilA(t) = i) =1 (52)

P(EG)(t) =5 # ilAt) = i) =1 (53)
P(NJZi€) (1) =1 (54)

concluding the proof of the second claim. ]

B. Proof of Lemma 2

Proof: Let W (i, K') be the matrixi¥ (¢) for transmitter:
and collection of receiver&’. We have

P(W(t) = =1Ip II a-Py.
JEK  jeKe\{i}
From the definition of the state update,
W (i, K) =1 + (1 —v) diag(exe) + (1 — 7)exe] (56)
=1— (1 —y)diag(ex) + (1 —v)exe! . (57)

(55)

This matrix hasl on the diagonal elements corresponding

to K¢ and~ on the elements corresponding k0. The i-th
column containg1 — 7) in the rows corresponding t&". Note

thatP(j € K | i) = P;;, which will make taking expectations
easier. To calculate expectations we first take the expewtat

over K for fixed i and then the expectation ovér.

Calculating W. Taking the expectation ovex for fixed 4,
we get:

Ex[W(i,K) | i] =1—(1—~)diag(p;) + (1 — 7)pie;

(58)
Then taking an expectation ovemwe get:

N
=y (..
EW () =1-—— <d1ag (Z; pi> - P) (59)
L—9
=1—-——L(P). 60
I L(P) (60)
Calculating W’. To calculate W’ we first calculate

Wi, K)TW (i, K):
W (i, K)"W (i, K)
=1-2(1—7)diag(ex) + (1 —7) (exe] + e;ef)
+ (1 - 7)* diag(ex)
—(1—7)% (exe] +eez) + (1 —7)%|Kleie]
=1—(1—+?) diag(ex) +7(1—7) (exe! + ejek)
(1 —)?|K| diag(e;) - (61)
Now taking the expectation ovét we obtain
Ex (W (@i, K)"W (i, K) | ]
=1 —(1—7")diag(p;) + (1 =) (pie] +eip;)
+ (1 =) |[pill, diag(e;) - (62)

Finally, taking the expectation over

EW ()W (t)]

— A2 _
— -1 Giag(P1) 4+ %(P + PT)
N2
+ % diag(P1)
_ ;291 =9)
=1 - —5—L(P) (63)
Calculating W". First we calculatéV (i, K)T1:
W(i, K)'1=1-(1-7ex +(1-7)|Kle;.  (64)
This gives
Wi, K)T11TW (i, K)
=117 — (1 —y)(1ek + ex1?)
+ (1 —9)|K|(1e] +e;17)
+(1-7)%exef
— (1 =7)*|K|(exe] +eje)
+ (1 —7)?|K|? diag(e;) (65)

Let 1,; denote the indicator variable nodeeceiving node’s
transmission.. Now taking expectations ovéer

E[(1ek + ex1T) | i] = (1p! + ps17) (66)
E[[K|(1e] +ei17) | i] = ||pill, (1e] +ei1T) (67)
E[eKef< | ’L] =E Zlijlikejeg
= pipz diag(p; © pi)
+ diag(p:) (68)
E[[K|(exe] +eief) [ ] =E |> 1jli(ere] +eef)
_'j7k
= Z PijPy.(exel +eel) — Z Pfj (ejel + el-e]T)
J.k J

+ Piylejel +eef)
J
= pill, (Pie] +eip;)
—((pi® pi)e] +ei(p;i ©® Pi)T)

+ (piezT + eiPiT) (69)
E[|K|* diag(e;) | i] = E Z 1;;1;c diag(e;)| (70)
g,k
= Z P,;; Py, diag(e;) Z dlag e;)
7,k
+ Z P;; diag(e;)

J

= (IIpil1? = lIps © Pl + I1pill) diag(e,) (72)



Taking the expectation with respect tgields:

NE[(1ek +ex1™)] = PT117P (72)

NE[K|(1ef 4 e;1T)) = PT11TP (73)
NElegek] = P? — diag((P ® P)1)

+ diag(P1) (74)

NE[|K|(exe! + e;ek)] = diag(P1)P + P diag(P1)

+2P—-2(PoP) (75)
NE[|K|? diag(e;)] = diag(P1)?
— diag((P ® P)1)
+ diag(P1)) (76)
Putting it together:
E[W ()" JW (1))
I Gl ) R (P1)P — Pdiag(1P)
= N2 1ag 1ag
+ diag(P1)? + 2 diag(P1)
+2PGP-2P
—2diag((P ® P)l)) (77)
1—7 2 21—« 2
N Gkl NQ) L(P)* + ) RE ) L(P)
2(1 — )2
- %L(P ®P) (78)
concludes the proof. ]
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